
dynamic viscosity; e, parameter characterizing the injection rate; ~, ~, similarity variables; 
a, parameter characterizing the thickness of the body; Px, Tx, Fx, projection, onto the sym- 
metry axis, of the pressure and friction forces and the total force, referred to p~vg; qx, 
heat flux to body surface; ci, mass concentration of the i-th component of the mixture; Mi, 
molecular weight of the i-th component; y, ratio of specific heats at constant pressure and 
constant volume; c, constant characterizing the pressure on the body surface (c = I according 

to N~r theory); k, constant for the similarity problem J(q) = ~F(h)dn; F(h) = p/p; h, 

specific enthalpy, referred to u~; To, stagnation temperature; Cp, specific heat at constant 
pressure. Indices: 6, edge of boundary layer; w, surface of body; =, hypersonic flow; i, 
i-th component of mixture. 
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DYNAMICS OF GAS COMBUSTION IN A SPHERICAL VESSEL 

V. I. Vodyanik UDC 536.46 

Equations are obtained to describe the dynamics of motion of a flame front and a 
gas in a spherical vessel. The possibility of a transition from combustion to 
thermal shock is demonstrated. 

The combustion of a gas in a spherical vessel with central ignition is the simplest and 
most frequently theoretically and empirically studied case of combustion with a constant 
volume. The spherical vessel is often used as a convenient tool to determine the normal rate 
of propagation of a flame, maximum blast pressure, rate of increase in blast pressure, and 
certain other parameters of the process which are important for the solution of practical 
problems of industrial explosion-proofing. Nevertheless, the dynamics of flame propagation 
in a spherical vessel have yet to be described analytically. The literature [I, 2] contains 
theoretical descriptions of the dynamics of the pressure increase with an explosion. These 
descriptions employ differential equations requiring numerical solution on a computer. 

As is known, the propagation of a flame in a gas is defined by its normal velocity u and 
the velocity of the burning gas. The character of the motion of the flame in a closed vessel 
is complicated by the fact that the velocity of the gas ahead of the flame is variable. How- 
ever, it can easily be determined on the basis of the condition that the gases formed in front 
of the flame expand in the direction of the fresh gas and in the direction of the combustion 
products in a ratio which is proportional to the volumes of fresh gas and combustion products, 
respectively, at the given moment of time. This condition essentially follows from the con- 
dition of equality of the pressures at all points of the vessel during combustion. 

A volume udt of fresh gas burns over an infinitesimally short interval of time dt on a 
unit surface of the flame. If the degree of increase in the volume of the gas with combus- 
tion is designated as g, then the burned gas will occupy the volume cudt and the increment in 
volume will be (g -- 1)udt. It is this increment that is distributed proportionately as de- 
scribed above. In particular, in the case of a spherical vessel (Fig. I), the following 
volume of gas is moved in the direction of the fresh gas 

4 
__ ~ (~3 _ r3) 
3 

( e  - -  1)  udt. 

3 
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Fig. I. Scheme of flame propagation 
in a spherical vessel. 

This displacement also determines themotion of the fresh gas directly ahead of the flame 
front. Then the increase in the radius of the flame may be expressed as (Fig. I): 

d r = u d t §  1 - ,  R 3 (~. - - 1 ) u d t .  ( l )  

I f  i n  a f i r s t  a p p r o x i m a t i o n  we assume t h a t  u and ~ a r e  c o n s t a n t  and a r e  i n d e p e n d e n t  o f  t h e  
t h e r m o d y n a m i c  p a r a m e t e r s  o f  t h e  gas  in  t h e  v e s s e l  (which change d u r i n g  c o m b u s t i o n )  and i f  we 
i n t r o d u c e  t h e  n o t a t i o n  x = r / R  and a = ~ / ( ~  -- 1) t h e n  we can  w r i t e  t he  s o l u t i o n  o f  d i f f e r e n -  
t i a l  e q u a t i o n  (1) i n  . the fo rm 

t =  R a [ ~ a r c t g  x ~  11n ( x - - a )  2 ] 
3----~ 2 a - - x  2 x ~ +  ax + a ~ (2) 

In this equation, it is already taken into account that the integration constant is zero as a 
result of the initial conditions t = 0 and x = 0. 

Equation (2) describes the displacement x of the,flame front over time. The fact that 
this relation is expressed in explicit form relative to t rather than x makes it quite con- 
venient to use, since the range of x is always the same and is 0~x~1. 

Figure 2 shows the dependence of the dimensionless complex 

~ =  a . [ ~ a r c t g _ _ X ~ 3  I in ( x - - a )  2 ] 
3~ 2 a - - x  2 x Z +  a x +  a ~ 

on the dimensionless displacement x of the flame front at different ~. 

The dynamics of flame movement in a spherical vessel as described by Eq. (2) agree well 
with numerous experimental results [l]. We can obtain the apparent velocity of the flame 
directly from Eq. (I) 

. . . .  u e - - ( ~ - - 1  , ( 3 )  
dt 

f rom which  i t  f o l l o w s ,  i n  p a r t i c u l a r ,  t h a t  d r / d t  = Eu a t  t he  b e g i n n i n g  o f  c o m b u s t i o n  a t  r = 0, 
t h a t  t h i s  v e l o c i t y  i s  s l i g h t l y  d e p e n d e n t  on r ,  and t h a t  d r / d t  = u a t  t h e  end o f  t h e  p r o c e s s  a t  
r = R. E q u a t i o n  (3) can  be c o n v e n i e n t l y  u sed  to  a n a l y z e  f i l m  s c a n s  o f  f l ame  m o t i o n  to  e m p i r i -  
c a l l y  d e t e r m i n e  normal  v e l o c i t y .  H e r e ,  no t  o n l y  can  the  i n i t i a l  s e c t i o n  be  used  f o r  t he  
analysis -- as is currently done -- but the entire scan can be employed. Moreover, analysis of 
the results of such experiments using Eq. (3) reveals changes in u during combustion in a 
closed vessel due to changes in pressure and temperature. 

If we set x = 1 in Eq. (2), we may express the total time of development of the explo- 
sion in the spherical vessel. This quantity is of great practical importance in explosion- 
proofing problems, so highly approximate empirical formulas -- those in [3], in particular -- 
are normally used for its calculation. It is recommended that it be determined from the con- 
dition that the ratio of the maximum rate of pressure increase to the mean be roughly equal to 
three, or that the mean apparent velocity of the flame in the spherical vessel be roughly four 
times greater than the normal velocity [4]. 

514 



o o2 o,4 o,e o,8 x 

Fig. 2. Dependence of the dimensionless 
complex X on the dimensionless displace- 
ment of the flame x at different a. 

The propagation of the flame in the vessel causes the fuel gas and combustion products 
to move. With a known law of flame front displacement, the gas motion problem can be solved 
graphically or numerically [5]. However, Eq. (2) allows us to solve it analytically. 

To analytically describe the dependence of the displacement of an arbitrary point M (an 
infinitesimal volume of the fuel gas) on the displacement of the flame front (see Fig. I), we 
write the condition of conservation of mass of the gas in the vessel during combustion: 

4 4 4 ~r3p ~ + (R 3 - -  r3) p = - -  ~R3po, ( 4 )  
3 3 3 

where Pc, P, and Po are running values of the densities of the combustion products and fuel 
gas and the initial density of the gas, respectively. Here, the spatial nonuniformity of the 
densities of the gases due to heat losses and the Mach effect will be ignored. 

If we divide both sides of Eq. (4) by p and consider that 
4 __ ~ (R3 _ y3) 

Pe _._ 1 and  Po _ 3 
4 

3 

where yo is the initial position of the point M (before ignition of the mixture), we obtain 

(5) 
8 

When solved simultaneously, Eqs. (5) and (2) describe the displacement of an arbitrarily 
chosen element of the fuel gas over time. 

To describe the movement of an arbitrary point N (see Fig. |) in the combustion products, 
both sides of Eq. (4) are divided by Pc. Here, it should be noted that by the end of combus- 
tion, point N, with the running coordinate y, occupies the initial position with the coordi- 
nate yo. The density of the combustion products here will be Po. Then 

p o _  4 / 4 
T 

Thus, from (4) we can obtain an equation connecting the running coordinate of an element 
of the combustion products with the position of the flame front: 

g = go ~ x3 + ~ ( 1 - -  x3). (6 )  

Equation (6), together With (2), describes the displacement of a volume element of the com- 
bustion products over time. As an example, Fig. 3 shows the displacement of the flame front 
according to Eq. (2) and an element of the gas according to (5) and (6) for different initial 
positions of the gas Yo. 

Analysis of the dynamics of motion of the gases shows that the fuel mixture has a non- 
uniform acceleration field, with acceleration of the gas being significantly greater near the 
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center of the vessel than at the periphery. The role of a strong and nonuniform acceleration 
field in a vessel may be quite substantial, for example, in the combustion of gas-disperse 
systems. This is because the acceleration field will result in different laws of displace- 
ment of the gaseous dispersion medium and the solid or liquid disperse phase, which will in 
turn inevitably lead to disturbance of the initial distribution of the concentration of the 
medium in the volume. 

It is apparent from Fig. 3 that the gas velocity changes suddenly at the flame front. 
Analysis of the laws of motion of the fuel gas and combustion products under any conditions, 
such as in an open space, in a tube at the open or closed end, and in closed vessels of any 
shape, shows that the sudden change in gas velocity at the flame front is always the same and 
is equal to Av = u(~ -- I). This change in velocity evidently always occurs over distances 
equal to the thickness of the front. If in a first approximation we consider the motion of 

the gas at the front to be equally accelerated, then we may write the following for the accel- 

eration ~: 

A v  u (~ - -  1) 

At At 

On the  o t h e r  hand ,  we e x p r e s s  t h e  t h i c k n e s s  o f  the  f lame f r o n t  6 as f o l l o w s :  

�9 6 = u A t  + o (At) 2 
2 

If the last two equations are solved simultaneously, excluding the time interval At from 

them, we obtain 

~(~ - -  1) 
- (7) 

2~ 

By the thickness of the flame front, we mean the length of the heating and chemical reaction 
zones, i.e. the length of the zones in which the thermodynamic parameters of the gas change. 
If we take E = 6, u = 0.4 m/sec, and 6 = 0.5 mm to evaluate the order of magnitude of the gas 
acceleration at the front, we obtain ~ = 5600 m/sec 2. Such a strong gas acceleration field 
at the flame front may lead to stratification of the intermediate and final combustion pro- 
ducts of the reaction with respect to density, particularly if there is a solid phase such as 
soot among them. 

All of the above conclusions are valid for the case where u is constant. However, it is 
well known that the normal velocity depends on the temperature and pressure of the fuel gas. 
These relations were expressed in [6] with exponential empirical formulas. In particular, 
for an adiabatic combustion process, it is recommended that the change in normal velocity be 

expressed by the formula [2] 
m 

( P . m+n V 

uo x-P-[o) U 

where uo is the normal velocity of the flame with the initial state parameters of the fuel 
gas; p and po are the current and initial pressure of the gas. 

However, such an exponential dependence of u on temperature agrees satisfactorily with 
experimental results at relatively low temperatures. The discrepancy becomes fairly large at 
temperatures close to the temperature of spontaneous combustion. Moreover, this relation can 
be used to determine values of u at temperatures above the spontaneous combustion temperature, 
which is physically contradictory. In connection with this, the author of [3] proposed that 
the dependence of normal velocity on the temperature T of the fuel gas be expressed by the 
following empirical formula: 

U =  U n 

T 
In 1 Tse 

In (1 Tn 
Tse 

(s) 

where Tsc is the spontaneous combustion temperature; T n ~300~ is the normal room tempera- 
ture at which the handbook value of normal velocity of the flame u n is determined. 

Comparison of Eq. (8) with the well-known exponential relation at m~ |.5 shows that they 
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Fig. 3. Displacement of flame front according to Eq. (2) 
and of gas according to Eqs. (5) and (6) in a spherical ves- 
sel with R = I m at u = 0.4 m/see, ~ = 6; 1) flame front 
displacement; 2-5) displacement of gas element with its ini- 
tial position relative to the center of the vessel correspond- 
ing to a distance yo = 0.2; 0.4; 0.6; 0.8 m. t, sec; y, r, 
m. 

Fig. 4. Displacement of flame front in a spherical vessel 
with R = I at u = 0.4 m/see, e = 6, Po = 0. I MPa, Pb = 0.8 
F~a, Tsc = 800~ y = 1.4, n = --0.2; I) according to Eq. (2); 
2, 3, 4, 5) according to Eqs. (10) and (11), respectively, at 
To = 300; 400; 500; 600~ 

give nearly the same values of u at temperatures significantly below Tsc. The advantages of 
Eq. (8) are seen at high temperatures and consist of the fact that u § ~ at T § Tsc , i.e., 
the phenomenon of spontaneous combustion is described by Eq. (8) as the propagation of the 
front at an infinite velocity. This agrees well with the physical representation of the spon- 
taneous combustion process as the combustion of the mixture simultaneously over the entire 
volume. The value of u cannot be determined if T > Tsc is substituted into Eq. (8), which is 
another important advantage of this formula. 

Thus, with adiabatic compression of the mixture during combustion, it is recommended 
that the change in u be expressed by the relation 

?--! 

In 1 ~ c  

u = Un [ Tn 
In 1 - - - -  

~c 

where Pn is the normal (atmospheric) pressure at which u n is determined. 

Substitution of (9) into differential equation (I) yields 

dr r 3 P ~ In 1 To ' p 

/ 
The r u n n i n g  v a l u e  o f  p r e s s u r e  i n  t h e  s p h e r i c a l  v e s s e l  may be  r e l a t e d  co t h e  r a d i u s  o f  t h e  
f l a m e  u s i n g  t h e  w e l l - k n o w n  f o r m u l a  [1] 

I 1 [ r _ 1 P b - - P  P 

R P b - - P o  (11)  

where Pb is the maximum final pressure with complete combustion of the mixture. Equations 
(I0) and (11) constitute a system and can be solved simultaneously by numerical methods. As 
an example, Fig. 4 shows solutions of these equations for certain specific values of the mix- 
ture parameters. These solutions indleate that accounting for the dependence of u on temper- 
ature and pressure at temperatures considerably below the spontaneous combustion temperature 
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yields a small correction to the results obtained with Eq. (2). The difference increases with 
temperature, and at 

t he  d e f l a g r a t i o n  p r o c e s s  changes  ove r  a t  a c e r t a i n  s t a g e  to  s p o n t a n e o u s  c o m b u s t i o n .  This  i s  
d e s c r i b e d  by sys t em (10 ) ,  ( l l )  as the  a t t a i n m e n t  o f  a c o m b u s t i o n  r a t e  equa l  to  i n f i n i t y .  

E q u a t i o n  (11 ) ,  t o g e t h e r  w i t h  (2) or  (10 ) ,  can a l s o  be used  to  d e s c r i b e  the  dynamics  o f  
the  p r e s s u r e  i n c r e a s e  w i t h  gas c o m b u s t i o n  in  a s p h e r i c a l  v e s s e l .  

I n  e x p e r i m e n t s ,  t he  phenomenon of  s p o n t a n e o u s  c o m b u s t i o n  o f  p a r t  o f  the  Volume o f  a mix-  
t u r e  d u r i n g  i t s  b u r n i n g  may be p e r c e i v e d  as a t r a n s i t i o n  to d e t o n a t i o n ,  bug t h e r e  a r e  impor -  
t a n t  d i f f e r e n c e s  be tween  the  two: in  d e t o n a t i o n ,  t he  m i x t u r e  i s  ign i t e .d  as. a r e s u l t  o f s h o c k  
c o m p r e s s i o n  in  a c c o r d a n c e  w i t h  the  Hug0n io t  c u r v e ;  i n  the  p r e s e n t  c a s e ,  t he  mixtu~:e i.s i g n i t e d  
as a r e s u l t  o f  c o m p r e s s i o n  in  a c c o r d a n c e  w i t h  the  P o i s s o n  c u r v e ;  d e t o n a t i o n  p r o p a g a t e s  in  the  
form o f  a wave wi th  a c e r t a i n  f i n i t e  v e l o c i t y ,  w h i l e  t he  p r o c e s s  o f  s p o n t a n e o u s  combus t i on  
d e s c r i b e d  h e r e  o c c u r s  s i m u l t a n e o u s l y  i n  a c e r t a i n  volume o f  t he  f u e l  gas .  

The above  a n a l y t i c a l  s o l u t i o n  o f  t he  p rob l em o f  t he  t r a n s i t i o n  o f  d e f l a g r a t i v e  eombus- 
t i o n  to  s p o n t a n e o u s  c o m b u s t i o n  does no t  t ake  i n t o  a c c o u n t  the  d u r a t i o n  o f  the  i n d u c t i o n  
p e r i o d  o f  the  s p o n t a n e o u s  c o m b u s t i o n  p r o c e s s ,  wh ich ,  as i s  known, depends  on the  t e m p e r a t u r e  
o f  t he  m i x t u r e .  A l lowing  f o r  t h i s  t ime ,  s p o n t a n e o u s  c o m b u s t i o n  s h o u l d  b e g i n  a t  a c e r t a i n  
deg ree  of  " o v e r c o m p r e s s i o n "  o f  t h e  m i x t u r e .  However,  o b t a i n i n g  an a n a l y t i c a l  s o l u t i o n  f o r  
the  t h u s - s t a t e d  p rob lem would r e q u i r e  o b t a i n i n g  t he  dependence  o f  t he  d u r a t i o n  o f  the  i n d u c -  
t i o n  p e r i o d  on the  thermodynamic  p a r a m t e r s  o f  t he  f u e l  m i x t u r e .  

NOTATION 

u, normal velocity of flame; t, time; ~ = 3.14159...; R, inside radius of spherical 
vessel; r, running radius of the spherical flame; E, degree of expansion of the gas with com- 
bustion; x, dimensionless running radius of spherical flame; a, I, dimensionless complexes; 
p, density of the gas; y, position of arbitrary point of gas relative to center of vessel; 
Av, sudden change in gas velocity at flame front; ~, acceleration of gas; 8, thickness of 
flame front; m, n, temperature and barometric exponents; y, exponent of adiabatic curve; p, 
pressure of gas; T, temperature of gas. Indices: 0, initial state; b, final state; e, com- 
bustion products; n, normal external conditions; sc, conditions of spontaneous combustion. 

] ~ 

2. 

3~ 

4. 

5. 

6. 
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